

Рис. 1. Общий вид установки AEOLOTRON и схема секций с расположением вентиляторов и области измерений.

Рис. 2 Пример среднего поля скорости для частоты вращения вентиляторов 16 Гц.

Рис.4 Пространственное распределение уклонов поверхности (область 20*10 см) а) по продольной координате S_x б) по поперечной координате S_y

Рис.5 Схема применения TG метода для изучения поверхностных течений

Рис.6(а) Мгновенное поле модуля завихренности Ω в устойчиво-стратифицированном погранслое в момент времени t = 1000 для Re = 15000, Ri = 0.08. Крутизна волны ka = 0.2, фазовая скорость $c/U_0 = 0.05$.

Рис.6(б) Возмущения полей плотности и температуры, индуцированные поверхностной волной

Рис.7 Профили частоты плавучести v, масштаба турбулентности λ , кинетической η и потенциальной П энергии при разных значениях параметра E_* безразмерная скорость движения скачка температуры (E_* =0.66, E_* =0.45), при R=1-сильная анизотропия (пунктир) и R=0.7-слабая анизотропия (сплошные кривые

Рис.9 Временная эволюция концентрации капель n_{max}/N внутри кластера для капель с различными диаметрами при относительной влажности 99% (верхний рисунок) и 100% (нижний рисунок). Кривая отмеченная жирным шрифтом описывает капли с размером d>5мкм, для которых скорость развития неустойчивости не зависит от размера капель.

Рис. 10. Нормированные профили дефекта скорости воздушного потока при следующих значениях частоты вращения вентилятора: а – 20 Гц, б – 30 Гц, в-35 Гц, г – 40 Гц, д – все точки на одном графике.

Рис.11 Нормированные профили дефекта температуры воздушного потока при следующих значениях частоты вращения вентилятора: а – 20 Гц, б – 30 Гц, в-35 Гц, г – 40 Гц, д – все точки на одном графике.

Рис. 12. Зависимости коэффициента сопротивления C_{D10N} (а), числа Стентона C_{T10N} (б) и параметра температурной шероховатости (в) от эквивалентной скорости ветра при различных частотах вращения вентилятора и заглублениях сетки.

Рис.13Зависимости коэффициента сопротивления *C*_{D10N} (а), числа Стентона *C*_{T10N} (б) и параметра температурной шероховатости (в) от значительной высоты волн при разных скоростях ветра.

Рис.14 *С*_{*D10N*} (а), числа Стентона *С*_{*T10N*} (б) и параметра температурной шероховатости (в) от маркера брызг при разных скоростях ветра.

Рис.15 Одномерные спектры возвышений для а) северного ветра и₁₀=6,7894 м/с, б) западного ветра и₁₀=5,5005 м/с, в) южного ветра и₁₀=4,5207 м/с, г) восточного ветра и₁₀=3,9734 м/с. Сплошная черная линия – экспериментальные данные, синяя линия – параметризация WAM 3, розовая линия – параметризация Tolman&Chalikov, зеленая линия – параметризация WAM 4.